

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

Supra R*-Closed Sets and Supra R*-Continuity

Renu Thomas^{*1}, C.Janaki²

^{*1} Department of Mathematics, Sree Narayara Guru College.K.G.Chavadi.Coimbatore-105, Tamil Nadu,

India

² Department of Mathematics, L.R.G.Govt .College for Women ,Tirupur-638 604, Tamil Nadu,

India

renu7465@gmail.com

Abstract

The aim of this paper is to define and investigate supra R^* -closed sets in topological space. Further, we discuss the concept of supra R^* -continuity and supra R^* -irresolutness.

Keywords: μR^* -C(X), μR^* -O(X), μR^* -continuous, μR^* -irresolute

Introduction

The study of generalized closed sets in topological spaces was initiated by Levine [7]. The modified forms of generalized closed sets were studied by [1,2,9,10]. C. Janaki and Renu Thomas introduced the R*-closed sets[4]. The notion of supra topological spaces was introduced by A.S. Mashhour [6] et al in 1983.

The purpose of this paper is to introduce and investigate a new class of sets called the supra R*-closed sets (μ R*-C(X)) and study its relation with other supra closed sets. Further we study supra R*-continuous and supra R*-irresolute function and their properties.

Preliminaries

Definition 2.1:

Let X be a non empty set .The sub family $\mu \subseteq P(X)$ where P(X) is the power set of X, is said to be the supra topology on X if X and $\varphi \in \mu$ and μ is closed under arbitrary unions. The pair (X, μ) is called a supra topological space. The elements of μ are said to be supra open sets .The complement of supra open sets are supra closed sets.

Definition 2.2:

- (i) The supra closure of A[8] denoted by $cl^{\mu}(A)$, is defined as $cl^{\mu}(A) = \bigcap \{ B:B \text{ is a supra} closed set and A \subseteq B \}$
- (ii) The supra interior of A[8] denoted by $int^{\mu}(A)$, is defined as $int^{\mu}(A) = \{B:B \text{ is a supra}$ open set and $B \subseteq A\}$

Definition 2.3: Let (X, τ) be a topological space and μ be the supra topology on X.We call μ to be a supra topology associated with τ if $\tau \subset \mu$

Definition 2.4 A subset A of a topological space (X, τ) is called supra regular open [5] if $A = int^{\mu}(cl^{\mu}(A))$ and supra regular closed [5] if $A = cl^{\mu}(int^{\mu}(A))$. The family of all supra regular closed sets of X is denoted by SRO(X). If a set is both supra regular open and supra regular closed then it is supra regular clopen and denoted by μ -clopen.

Definition 2.5

- 1. The intersection of all supra regular closed subset of (X, τ) containing A is called the supra regular closure of A and is denoted by $rcl^{\mu}(A)$.
- The supra regular interior of A is the union of all supra regular open sets of (X, τ) contained in A.

Definition 2.6 A subset A of a space (X, τ) is called supra regular semiopen if for every supra regular open set U, such that $U \subset A \subset cl^{\mu}(U)$. The family of all supra regular semi open sets of X is denoted by S-RSO(X).

Definition 2.7: Let (X, τ) and (Y, σ) be two topological spaces and $\tau \subset \mu$.

A function f: $(X, \mu) \rightarrow (Y, \sigma)$ is called

- (i) supra continuous [3] if the inverse image of each open set of Y is a supra open set in X.
- supra regular continuous [3] if f⁻¹ (V) is supra regular closed set in X for every closed set V in Y.

Definition 2.8: Let (X, μ) and (Y, σ) be two topological spaces and $\tau \subset \mu$ and $\sigma \subset \lambda$

A function f: $(X, \mu) \rightarrow (Y, \lambda)$ is called

- supra irresolute [3] if the inverse image (i) of each supra open set of Y is a supra open set in X.
- supra regular irresolute [11] if f⁻¹ (V) is (ii) supra regular closed set in X for every supra regular closed set V in Y.

SUPRA R*-CLOSED SETS (µR*-CLOSED **SETS**)

Definition 3.1. A subset A of a supra topological space (X,μ) is called supra R*-closed if $rcl^{\mu}(A) \subset U$ whenever $A \subset U$ and U is supra regular semiopen in X. We denote the set of all supra R*- closed sets in X by $\mu R^*-C(X).$

Result 3.2: Supra closed and supra R*-closed are independent.

Example 3.3: Let
$$X = \{a, b, c, d\}$$

 $\mu = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$
 $\mu R^* - C(X) = \{X, \phi, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, c\}\}$

Here $\{c\}$ is supra closed but not μR^* -closed. Also thecollection

 $\{\{a,b\},\{a,c\},\{b,d\},\{c,d\},\{a,b,c\},\{a,c,d\}\}$ is supra R*-closed but not supra closed.

Theorem 3.4: Finite union of supra R*-closed sets is supra R*-closed.

Proof: Let U be a supra regular semi open set in X. Also let A and B be supra R*-closed set in X. Hence $rcl^{\mu}(A) \subset U$ and $rcl^{\mu}(B) \subset U$, therefore $rcl^{\mu}(A) \cup$ $\operatorname{rcl}^{\mu}(B) \subset U.$

Implies $rcl^{\mu}(A \cup B) \subset U$. Hence the finite union of supra R*-closed sets is supra R*-closed.

Result 3.5: Every Supra regular closed set is supra R*-closed but not conversely.

Proof: Straight forward. Example 3.6

Let
$$X = \{a, b, c, d\}$$

 $\mu = \{X, \phi, \{a\}, \{c, d\}, \{a, c\}, \{a, c, d\}\}$
 $\mu R * C(X) =$
 $\{X, \phi, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}$

ISSN: 2277-9655 Scientific Journal Impact Factor: 3.449 (ISRA), Impact Factor: 1.852

$$\begin{cases} \{b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \\ \{a,b,d\}, \{a,c,d\} \end{cases}$$

are not supra regular closed .

Theorem 3.7: If a subset A of X is μR *-closed set in X , then $rcl^{\mu}(A)\setminus A$ does not contain any non-empty supra regular semiopen set in X.

Proof: Suppose that A is μR^* -closed set in X . Let U be a supra regular semiopen set such that $rcl^{\mu}(A)\setminus A$ \supset U and U $\neq \phi$. Now U \subset X\A implies A \subset X\U and $A \subset U^{c}$. Since A is μR^{*} -closed in X, $rcl^{\mu}(A) \subset$ U^c.So $U \subset X \setminus rcl^{\mu}$ (A), hence $U \subset rcl^{\mu}$ (A) \cap X\rcl^{μ}(A)= ϕ . This shows that U= ϕ , which is a contradiction. Hence $rcl^{\mu}(A)\setminus A$ does not contain any non-empty supra regular semiopen set in X.

Theorem 3.8: For any element $x \in X$. The set $X \setminus \{x\}$ is supra R*-closed or supra regular semiopen.

Proof: Suppose $X \setminus \{x\}$ is not supra regular semi open, then X is the only supra regular semiopen set containing $X \setminus \{x\}$. This implies $rcl^{\mu} \{X \setminus \{x\}\} \subset X$. Hence $X \setminus \{x\}$ is supra R*-closed or supra regular $\left\{a, b; a \in a, c; a \in a, c; a \in a, b; a \in a, c; a \in a,$

> **Theorem 3.9**: If A is supra regular open and μR^* closed. Then A is supra regular closed and hence urclopen.

> Proof: Suppose A is supra regular open and µR*closed. $A \subset A$ and by hypothesis

> $\operatorname{rcl}^{\mu}(A) \subset A$. Also $A \subset \operatorname{rcl}^{\mu}(A)$, so $\operatorname{rcl}^{\mu}(A)=A$. Therefore A is supra regular closed and hence µrclopen.

> **Theorem 3.10** If A is an μR^* - closed subset of X such that $A \subset B \subset rcl^{\mu}(A)$, then B is an μR^* -closed set in X.

> Proof: Let A be a μ R*-closed set of X such that A \subset $B \subset rcl^{\mu}(A)$.Let U be a supra regular semiopen set of X such that $B \subset U$, then $A \subset U$. Since A is μR^* closed, we have $rcl^{\mu}(A) \subset U$. Now $rcl^{\mu}(B) \subset$ $rcl^{\mu}(rcl^{\mu}(A)) = rcl^{\mu}(A) \subset U$, therefore B is an μR^* closed set in X.

> **Theorem 3.11:** Let A be the μR^* - closed in (X, τ). Then A is supra regular closed if and only if $rcl^{\mu}(A)\setminus A$ is supra regular semiopen.

> Proof: Suppose A is supra regular closed in X. Then $\operatorname{rcl}^{\mu}(A) = A$ and so $\operatorname{rcl}^{\mu}(A) \setminus A = \phi$, which is supra regular semiopen in X.

> Conversely, suppose $rcl^{\mu}(A)\setminus A$ is supra regular semiopen in X . Since A is µR*-closed by theorem 3.7 $rcl^{\mu}(A)\setminus A$ does not contain any non-empty supra

regular semiopen set in X. Then $rcl^{\mu}(A)\setminus A = \phi$. Hence A is supra regular closed in X. **4.** μR^* -open sets

Theorem 4.1: A subset A of X is said to be supra R*open if and only $F \subseteq \operatorname{rint}^{\mu}(A)$ whenever F is supra regular semiopen and $F \subset A$.

Proof: Necessity

Let F be supra regular semiopen such that $F \subseteq A$. X-A \subseteq X-F.Since X-A is μR^* -closed

 $\operatorname{rcl}^{\mu}(X-A) \subseteq X$ -F. $\operatorname{rcl}^{\mu}(X-A) = X$ -rint $^{\mu}(A) \subseteq X$ -F. Thus $F \subset \operatorname{rint}^{\mu}(A)$.

Sufficiency

Let U be any supra regular semiopen set such that X - $A \subseteq U$ and by hypothesis

X - U \subseteq rint^{μ}(A).Since rcl^{μ}(X-A) = X- rint^{μ} A \subseteq U.Therefore X-A is μ R*-closed and hence A is μ R*-open.

Theorem 4.2: Finite intersection of supra R*-open sets is supra R*-open.

Proof: Let A and B be μR^* -open sets in X. Then

 $A^{c} \cup B^{c}$ is μR^{*} -closed set. This implies

 $(A \cap B)^c$ is supra R*-closed set. Therefore $A \cap B$ is supra R*-open.

Theorem 4.3: If A is μR^* -closed subset of (X, τ) and F is supra regular closed set such that

 $F \subseteq \operatorname{rcl}^{\mu}(A) - A$. Then $F = \phi$ and thus $F \subseteq \operatorname{rint}^{\mu}(\operatorname{rcl}^{\mu}(A) - A)$.

By Theorem 4.1, $rcl^{\mu}(A)$ - A is μR^* - open.

Remark 4.4

- 1. The intersection of two supra R*- closed set is generally not a supra R*- closed set.
- 2. The union of two supra R*- open set is generally not a supra R*- open set.

Example 4.5:

Let $X = \{a,b,c,d\} \tau = \{X,\phi,\{a\},\{c,d\},\{a,c,d\} \mu = \{X,\phi,\{a\},\{a,c,d\},\muR^*-C(X) = \{\{a,c,d\},\{a,c,d\},\{a,c,d\},\{c,d\},\{a,b,c\},\{a,b,d\},\{a,c,d\},X,\phi\}$ Let $A = \{a,b,c\} B = \{a,b,d\}$ $A \cap B = \{a,b\} \notin \mu R^*-C(X)$ $\mu R^*O(X) = \{\{b\},\{c\},\{d\},\{a,b\},\{b,c\},\{b,d\},\{a,b,c\},\{a,b,d\},\{b,c,d\},X,\phi\}$ $A = \{c\} B = \{d\}$ $A \cup B = \{c,d\} \notin \mu R^*-O(X)$ 5. μR^* - continuous and μR^* -irresolute functions

Definition 5.1: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called μR^* -continuous function if $f^{-1}(V)$ is supra R^* closed in (X, τ) for every closed set V in (Y, σ) .

Scientific Journal Impact Factor: 3.449 (ISRA), Impact Factor: 1.852

ISSN: 2277-9655

Definition 5.2: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called μR^* -irresolute if $f^{-1}(V)$ is μR^* -closed in (X, τ) for every μR^* -closed set V in (Y, σ) .

Definition 5.3: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called supra regular continuous if $f^{-1}(V)$ is supra regular closed in (X, τ) for every supra closed set V of (Y, σ) .

Remark 5.4: The composition of two supra R*continuous function need not be supra R*-continuous. **Example 5.5**

$$X = Y = Z = \{a,b,c,d\}$$

$$\mu = \{X, \phi, \{a\}, \{d\}, \{a,d\}, \{a,b\}, \{a,b,d\}\}$$

$$\sigma = \{X, \phi, \{a\}, \{a,b\}, \{a,b,c\}\}$$

 $\eta = \{X, \phi, \{a\}, \{c,d\}, \{a,c,d\}\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = d, f(d) = c and $g : (Y, \sigma) \rightarrow (Z, \eta)$ by is defined as the identity function. Here both f and g are supra R*-continuous but $g \circ f$ is not supra R*-continuous. Since both

$$(g \circ f) \quad \{c,d\} = \{c,d\} and \\ (g \circ f)^{-1} \{a,c,d\} = \{a,c,d\}$$
 are not $\mu \mathbb{R}^*$ -

Remark 5.6: μR^* -irresolute function need not be supra R*- continuous and vice-versa.

Example 5.7:

Let
$$X = Y = \{a, b, c, d\}$$

 $\mu = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$
 $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$
 $\mu R^*-C(X) = \begin{cases} X, \phi, \{a, b\}, \{c, d\}, \{a, b, c\}, \\ \{a, c, d\}, \{b, c, d\}, \{a, b, c\}, \\ \{a, c, d\}, \{b, c, d\}, \{a, b, c\}, \\ \{a, c, d\}, \{b, c, d\}, \{a, b, d\} \end{cases}$

Define f: $(X, \mu) \rightarrow (Y, \sigma)$ as the identity mapping, f⁻¹{d} = {d} is not μR^* -closed, hence not μR^* -continuous but is μR^* -iressolute.

Example 5.8: Let $X = \{a, b, c, d\}$ $\mu = \{\phi, X, \{d\}, \{b, c\} \{b, c, d\} \{a, c, d\}\}$ $\sigma = \{X, \phi, \{b, c\} \{a, b, c\}\}$ $\mu R^*-C(X) = \{X, \phi, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, d\}\}$ $\{b, c, d\}, \{a, b, d\}$ $\mu R^*-C(Y) = all subsets of Y.$ Define f: $(X,\mu) \rightarrow (Y,\sigma)$ as the identity mapping, f is μR^* -continuous but is not μR^* -irresolute.

Remark 5.9: Every supra regular continuous function is μR^* -continuous but not conversely.

Let
$$X = Y = \{a, b, c, d\}$$

 $\mu = \{X, \phi, \{a\}, \{d\}, \{a, d\}, \{a, b\}, \{a, b, d\}, \{a, c, d\}\}$

 $\sigma = \{Y, \phi, \{a\}\}\$ Define $f: (X, \mu) \rightarrow (Y, \sigma)$ as the identity mapping, f is $\mu \mathbb{R}^*$ -continuous but not supra regular continuous.

Proposition 5.10: The composition of two supra R*-irresolute functions is supra irresolute.

Proof: Obvious

Proposition 5.11:

If $f:(X,\mu) \to (Y,\sigma)$ then if f is supra R*continuous, then $cl^{\mu}(f^{-1}(V)) \subset (f^{-1}(\overline{V}))$ for every $V \subset Y$.

Proof: Let $V \subset Y$. Then \overline{V} is closed in Y, then $f^{-1}(\overline{V})$) is $\mu \mathbb{R}^*$ -closed in X by the above result.. Therefore $f^{-1}(\overline{V}) = cl^{\mu}(f^{-1}(\overline{V}) \supset cl^{\mu}(f^{-1}(V))).$

Definition 5.12: A space (X, μ) is called supra R*-T_{1/2}-space (μ R*-T_{1/2}-space) if every supra R*-closed set is supra regular closed.

Theorem 5.13: Let f: $(X,\mu) \rightarrow (Y,\sigma)$ and g: $(Y,\sigma) \rightarrow (Z,\eta)$ be any two function, then

- 1. $g \circ f$ is μR^* -continuous if g is supra regular continuous and f is μR^* -irresolute.
- 2. $g \circ f$ is μR^* -continuous if is g is μR^* continuous and f is μR^* -irresolute.
- 3. $g \circ f$ is-supra regular continuous if f is μR^* -irresolute, g is μR^* -continuous and X is a supra $T_{1/2}$ -space.

Proof:

(1).Let V be a supra closed set in (Z, η) . Then g^{-1} (V) is supra regular closed set in (Y, σ) . Since f is μR^* -irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is μR^* -closed in (X, τ) . That is $(g \circ f)^{-1}(V)$ is R^* -closed in X. Hence $g \circ f$ is μR^* continuous.

(2). Let V be supra closed set in (Z, η). Since g is

 μ R*-continuous and $g^{-1}(V)$ is μ R*-closed set in (Y,

σ). As f is μR^* -irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is μR^* -closed in X. Hence $g \circ f$ is μR^* - continuous.

(3). Let V be supra closed in (Z, η) . Since g is μR^* continuous, $g^{-1}(V)$ is μR^* -closed in (Y, σ) . As f is

ISSN: 2277-9655 Scientific Journal Impact Factor: 3.449 (ISRA), Impact Factor: 1.852

 $\mu R^*\text{-irresolute} \quad f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \text{ is supra } R^*\text{-closed in } X.$ Therefore $g \circ f$ is supra $R^*\text{-continuous.Also since } X$ is a supra $T_{1/2}$ space $(g \circ f)^{-1}(V)$ is supra regular closed and hence $g \circ f$ is supra regular continuous.

Theorem 5.14: For a topological space, the following conditions are equivalent.

- 1. X is supra $R^{*}-T_{1/2}$ -space.
- 2. Every singleton set in X is either regular semi closed or supra regular open.

Proof:(i) \Rightarrow (ii):Let $x \in X$ and assume $\{x\}$ is not supra regular semi closed .Then X- $\{x\}$ is not supra regular semi o pen and X- $\{x\}$ is trivially a supra R*-T_{1/2} closed space in which every supra R*-closed set is supra regular closed. \Rightarrow X- $\{x\}$ is supra regular closed and $\{x\}$ is supra regular open.

(ii) \Rightarrow (i):Let us assume every singleton of X is either supra regular semi closed or regular open. Let $A \subseteq X$ be supra R*-closed and $A \subseteq rcl^{\mu}(A)$ and let $x \in rcl^{\mu}(A)$.

- 1// (A)

To prove $rcl^{\mu}(A) \subseteq A$

Case (i): Let {x} be supra regular semi closed .Suppose {x} does not belong to A, then $\{x\} \subseteq rcl(A) - A$.But by corollary 3.19[10] rcl(A) - A does not contain any non empty regular closed set in X. Hence {x} $\subseteq A$. $\Rightarrow rcl^{\mu}(A) \subseteq A$. The above implies $rcl^{\mu}(A) = A$.Hence A is a supra regular closed set. Thus every supra R*-closed

supra regular closed set. Thus every supra R*-closed is supra regular closed and hence X is supra R*- $T_{1/2}$ – space.

Case (ii):Let{x}be supra regular open .Since {x} $\subseteq rcl^{\mu}(A)$, we have {x} $\cap A \neq \varphi$. Hence

 $\{x\} \subseteq A$. Therefore A is supra regular closed and hence every supra R*-closed set is supra regular closed.

Theorem 5.15:

- 1. SRO(X) $\subseteq \mu R^*$ -O(X)
- 2. A space X is supra $R^{*}-T_{1/2}$ -space iff $SRO(X) = \mu R^{*}-O(X)$

Proof: (1) Let A be a supra regular open set in X. Then X-A is supra regular closed. Since every supra regular closed set is supra R*-closed \Rightarrow X-A is supra R*-closed. Hence A is supra R*-open which implies SRO(X) $\subseteq \mu$ R*-O(X).

(2).Let X be a supra R*-T_{1/2}-space.Let $A \in \mu R^*$ -O(X).Then X-A is supra R*-closed set. Since X is supra R*-T_{1/2}-space,X-A is supra regular closed. \Rightarrow A is supra regular open in X. Hence SRO(X) = μR^* -O(X).

http://www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology [244-248]

On the other hand, let $SRO(X) = \mu R^* - O(X)$.Let A be supra R*-closed. Then X-A is supra R*-open. X-A is regular open (by hypothesis).Hence A is supra regular closed and hence X is a supra R*-T_{1/2}-space.

References

- 1. S.P.Arya and T.M Noor, Characterization of s-normal spaces, Indian. J. Pure Appl. Math 21(1990)717-719
- 2. S.S.Benchalli and R.S.Wali, On RW-Closed Sets in topological Spaces, Bulletin of the Malaysian Mathematical Science Society(2)30(2007)99-110
- 3. S.Dayana Mary and N.Nagaveni ,On decomposition of regular generalized continuity in supra topological spaces,Asian J. of current engineering and Maths1(5)(2012)290-295
- 4. C.Janaki and Renu Thomas, On R*-closed sets in topological spaces, International J.of Mathematical Archive, 3(8)(2012), 3067-3074
- 5. M.Kamaraj, G.Ram Kumar and O.Ravi and M.L.Thivagar Mildly supra normal Spaces and some maps, International Journal of Advances in Pure and Applied Mathematics, Vol1, issue 4,68-85.
- 6. A.S. Mashhour, M.E.Abd.El-Monsef and S.N.El-Deeb, On Pre - continuous mappings and weak Pre- continuous mappings, Proc Math Phys.Soc.Egypt 53(1982),47-53
- 7. N.Levine, Generalized closed sets in topology, Rend, Circ, Pamelo (2)19(1970),89-96.
- 8. A.S.Mashhour, A.A.Allam,F.S.Mahamoud and F.H.Khedr,On supra topological Spaces ,Indian J.Pure Appl.Math.No 4,14(1983).502-510.
- 9. N Palaniappan and K C Rao, On regular generalized closed sets, Kyungpook Math. J.33 (1993), 211-21
- 10. O.Ravi.Ram Kumar G,M.Kamaraj(2011),On supra g-closed sets, International Journal of Advances in Pure and Applied Mathematics,1(2),52-66.
- 11. M.Trinita Pricilla and I.Arockiarani, On generalized b-regular closed sets in supra topological spaces, Asian J.of current engineering and maths1:1(2012)1-4